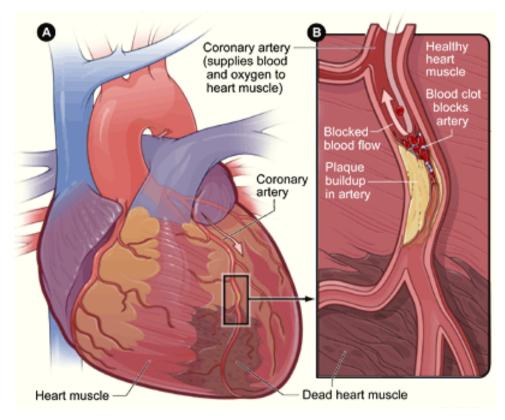


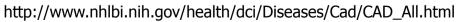
Molecular MRI of apoptosis in atherosclerotic plaque by using a peptide-vectorized paramagnetic imaging probe

Carmen Burtea¹, Sophie Laurent¹, Eric Lancelot², Marc Port², Sébastien Ballet², Olivier Rousseaux², Luce Vander Elst¹, Claire Corot², Robert N. Muller¹

¹Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, 24, Avenue du Champ de Mars, B-7000 Mons, Belgium; ²Guerbet, Research Center, 16-24 rue Jean Chaptal, 93600 Aulnay-sous-Bois, France



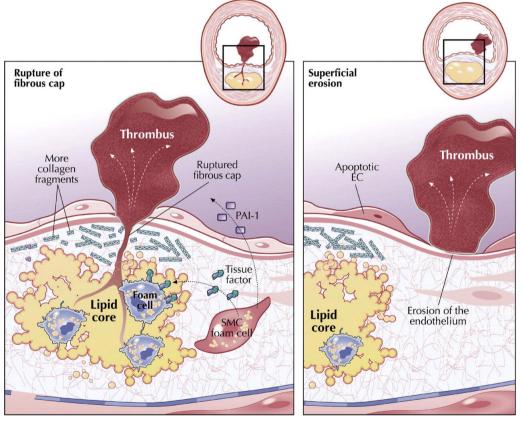
http://www.umh.ac.be/~nmrlab/

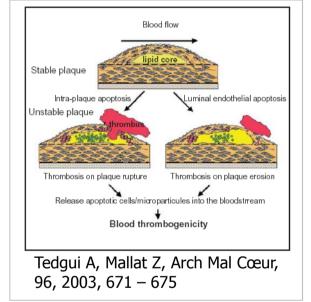


Cardiovascular diseases: complications of atherosclerosis

Important progress in the therapy and prevention of cardiovascular diseases

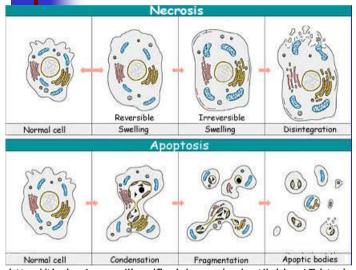
 Still, myocardial infarction and brain stroke
 the main causes of death in Occidental countries

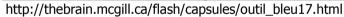


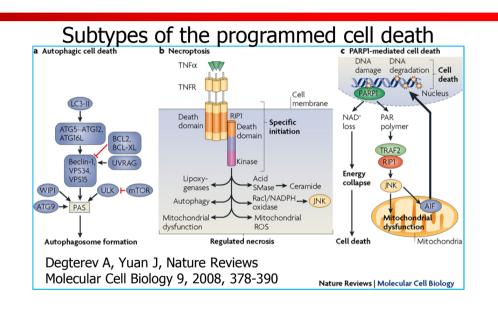


Vulnerable plaques, thrombosis and apoptosis

Libby, P. et al. J Am Coll Cardiol, 2006, 48, A33-A46

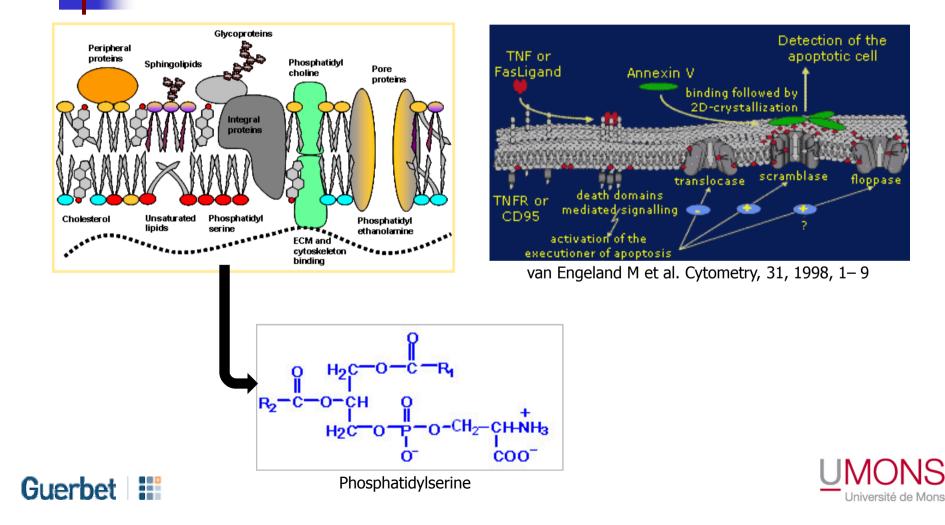

- Macrophages → MMPs → collagen degradation → weakening of the fibrous plaque → erosion and rupture of the fibrous plaque → thrombus
- Apoptosis of SMCs, macrophages, lymphocytes
 T → positive and negative effects

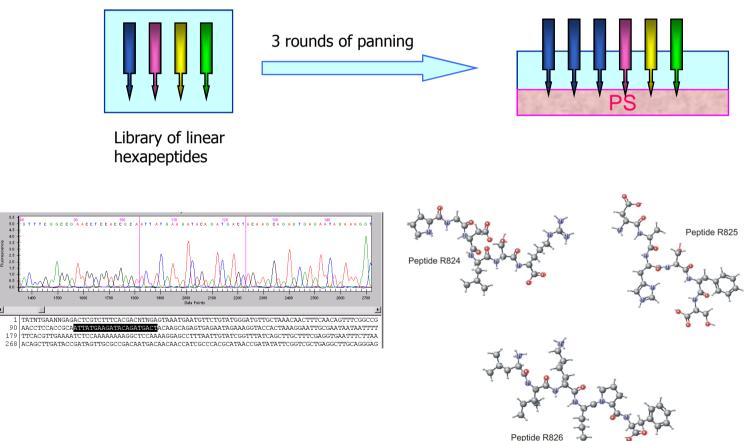



Guerbet 🔡

The mechanisms of cell death

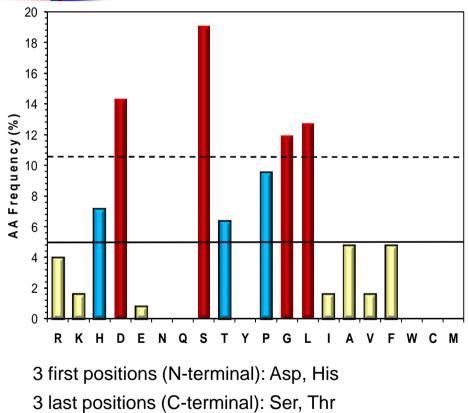
Apoptosis	Autophagy	Necroptosis	PARPtosis
 Chromatin fragmentation Membrane blebbing Apoptotic bodies Caspase dependent Early PS exposure 	 Expression of autophagy- related genes Degradation of cell organelles Accumulation of membrane- closed vesicles 	 Cell disintegration Independent of caspases Late PS exposure 	 Chromatin fragmentation independent of caspases Energy collapse Activation of PARP-1


Guerbet 🔡


AIM:

Search for peptide ligands that target apoptotic cells by a specific interaction with phosphatidylserine (PS)

METHOD: Phage display screening



3.5

RESULTS: Peptide sequence

ions (C-terminal): Ser, Thr	
lonic or hydrogen binding with the polar head of PS	

No clones	Homology
5	Low voltage-activated T-type calcium channel α -1 subunit
1	Tyrosine protein kinase pp60-c-src Neuronal pp60c-src
7	Matrix metalloproteinase 14 preprotein Matrix metalloproteinase 1, 9, 14
3	Transient rec. potential Ca²⁺ channel 6C Acyl-coenzyme A oxydase 2
1	Transient rec. potential Ca ²⁺ channel 6C Fas antigen ligand
1	K ⁺ inwardly-rectifying channel K ⁺ large conductance pH-sensit. channel
1	Protein Tyr phosphatase 2C Alanine:glyoxylate aminotransferase 2
1	Apoptosis associated Tyr-kinase Ca ²⁺ channel β-subunit
1	Transient receptor potential calcium channel 5 (TRPC5) Capacitative calcium entry channel 2

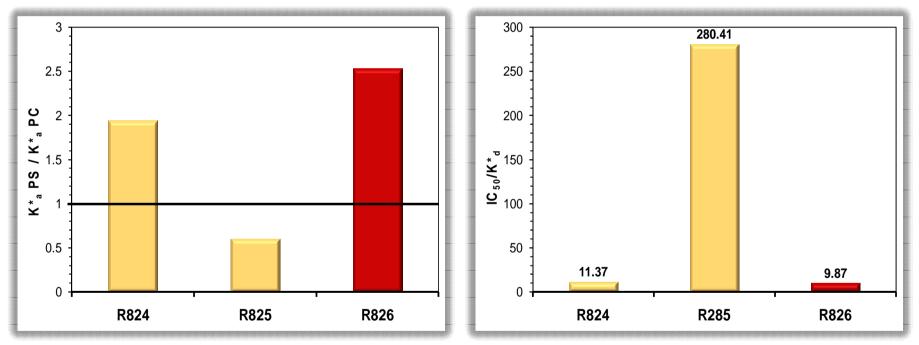
Guerbet 🔡

Université de Mons

Theoretical biochemical parameters of the three candidate peptides R824, R825 and R826, respectively, as estimated by using ExPASy Proteomics Server, Proteomics and sequence analysis tools; LogP was calculated by using the ACDLabs 12.0 software

Parameter	R824	R825	R826
Half-life	>20 h	1.1 h	5.5 h
Instability index	40.43	-5.82	13.72
рІ	6.27	5.08	10.00
LogP	-2.33 ± 0.86	-1.79 ± 0.88	2.51 ± 0.86
GRAVY	-1.167	-0.617	0.283
Aliphatic index	65	16.67	130

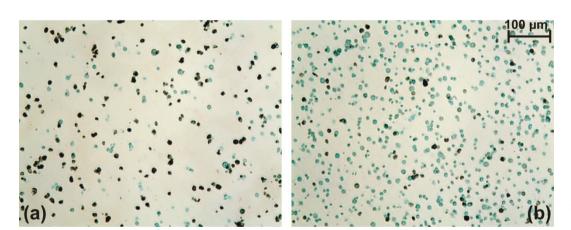
Half-life: theoretically estimated in mammalian reticulocytes *in vitro*; Instability index: when smaller than 40, the protein (or peptide) is predicted as stable; pI = Isoelectric point; LogP = Partition coefficient; GRAVY = Grand average of hydropathicity (predicts the hydrophobicity); Aliphatic index = the relative volume occupied by aliphatic side chains.

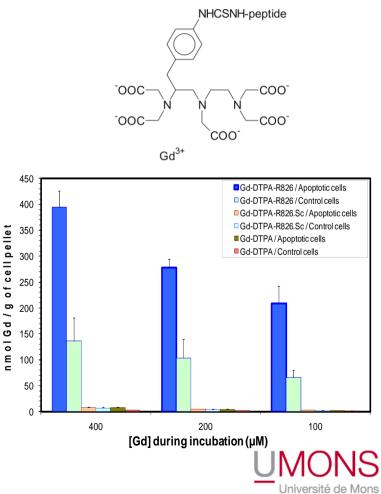


Jniversité de Mons

Specific affinity for PS of the selected peptides

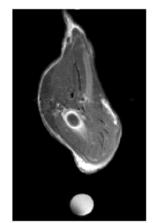
The ratio K_a for PS/ K_a for PC


Ratio IC_{50}/K_d of PS-specific peptides. The IC_{50} of R824, R825, and R826 was determined in competition with Annexin V

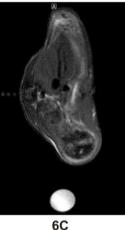


Binding of Gd-DTPA-g-R826 to apoptotic Jurkat cells as compared to various controls

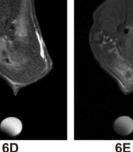
Apoptotic cells were stained (brown) in camptothecin treated **(a)** and control **(b)** samples with biotinylated Annexin V.

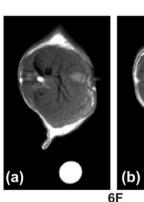


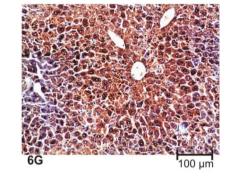
Guerbet 🛛

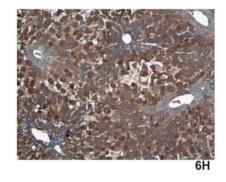


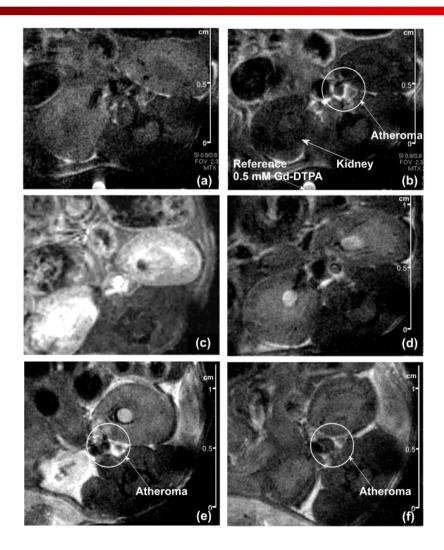
MRI (4.7T Bruker imaging system, T_1 -weighted MSME, TR/TE = 307.4/14.7 ms) of PS in mouse liver 30 min post contrast and immunohistochemistry of apoptotic cells



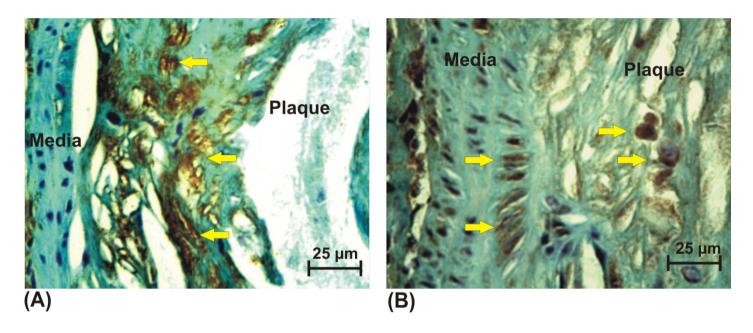



6B




Apoptotic liver imaged with Gd-DTPA-g-R826 in the absence **(6A)** and in the presence of competitor R826 **(6B)** is compared to healthy liver **(6C)**. Apoptotic **(6D)** and healthy **(6E)** liver imaged with Gd-DTPA. **(6F)** Apoptotic liver in pre-contrast **(a)** and post injection of Gd-DTPA-g-R826.Sc **(b)**. Apoptotic cells immunostained (brown) with AnnV–Bt **(6G)** and anti-caspase-3 antibody **(6H)**.

MR images (4.7T Bruker imaging system, RARE sequence, TR/TE = 1048.5/4 ms, spatial resolution = 90 μ m) of abdominal aorta in ApoE^{-/-} mice


Axial slices of abdominal aorta are shown in pre-contrast (a) and ~30 min post Gd-DTPA-g-R826 (b). They are compared to a TOF image (c) and to an image obtained post Gd-DTPA (d). The comparison between Gd-DTPA-g-R826 (e) and Gd-DTPA-g-R826.Sc (f) is shown 60 min post-contrast. Images compared in (a)–(d) and those in (e)–(f) are located at the same level of abdominal aorta.

Guerbet 🔡

Immunostaining of apoptotic cells in atherosclerotic aorta of ApoE^{-/-} mice

Apoptotic cells were immunostained (brown) with biotinylated Annexin V (A) and with anti-caspase-3 antibody (B).

Conclusions

- Peptide R826 → the most important PS-specific peptide
 - diagnosis of atherosclerotic disease and of other apoptosisassociated pathologies, such as cancer, ischemia, chronic inflammation, autoimmune disorders, transplant rejection, neurodegenerative disorders, and diabetes mellitus
 - cardiovascular diseases: apoptosis associated with loss of cardiomyocytes subsequent to myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart

